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Abstract
This paper describes the structure and performance of a new sig-
nal processing scheme, motivated by the physiology of the pe-
ripheral auditory system, that improves speech recognition accu-
racy in the presence of broadband noise. An important attribute
of the peripheral processing is a novel mechanism to represent
the cycle-by-cycle synchrony in the response of low-frequency
auditory-nerve fibers, in addition to the more conventional pro-
cessing based on mean rate of response. It is shown that the use
of the physiologically-motivated peripheral processing improves
recognition accuracy in the presence of both broadband and tran-
sient noise, and that the use of the synchrony mechanism provides
further improvement beyond that which is provided by the mean
rate mechanism.
Index Terms: auditory modeling, robust speech recognition, au-
ditory snchrony.

1. Introduction and Background
It has long been speculated that features based on auditory and
perceptual analyses of speech encapsulate more information about
speech than do the traditional generic features derived using stan-
dard signal processing techniques. The most widely adopted fea-
tures based on auditory principles are the well known perceptual
linear prediction (PLP) features, and even these features are out-
performed by traditional MFCC features in many acoustic con-
ditions. This, however, need not imply that our expectations (and
indeed several decades of experimental observations) about the rel-
evance of auditory processing to speech recognition were wrong.
We believe instead that the mediocre performance of auditory fea-
tures thus far is a consequence of both suboptimal choices of the
features themselves and the lack of a good match between their
characteristics and the characteristics of the speech recognition to
which they are input.

This paper describes some initial results from our efforts to
develop speech recognition systems based on a richer description
of the peripheral auditory response to sound. In this section we
review some of the previous work that has motivated our formula-
tion. In the next section we describe our peripheral processing and
feature extraction procedures in some detail. We describe in Sec.
3 some experimental results obtained using our procedures.

1.1. Early work in auditory modeling

Beginning in the early 1980s, there has been substantial interest in
the use of feature sets that are developed by computational models
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he auditory periphery, typically based on physiological mea-
ments of the responses of individual fibers of the auditory
e (e.g. [1, 2, 3]) Most such auditory models (sometimes called
models”) include a set of linear bandpass filters with band-

th that increases nonlinearly with center frequency, a nonlinear
ification stage that frequently includes short-term adaptation
lateral suppression across frequency bands, and, frequently,

ore central display based on short-term temporal information.
examples form that era include Seneff’s “Generalized Syn-

ny Detector” (GSD) [3], and Ghitza’s Ensemble Interval His-
am (EIH) mechanism [1]. The GSD describes instantaneous
ng information by comparing the output of each analysis chan-
with itself after a delay equal to the reciprocal of the analysis
uency. The EIH mechanism estimates instantaneous frequency

the times at which the channel outputs traverse a set of fixed
sholds.

Initial evaluations of the performance of auditory models indi-
that with clean speech, such approaches tend to provide recog-
n accuracy that is comparable to that obtained with conven-

al features such as MFCC or PLP parameters, and that these
ures can provide greater robustness with respect to environ-
tal changes when the quality of the incoming speech decreases
ifferences between training and testing environments increase
. [4]). Nevertheless, the gains in performance provided by au-
ry models at that time had been modest and in many cases is
eded by the improvement in recognition accuracy provided by
entional robustness algorithms based on statistical parameter
ation (e.g. [5]). Furthermore, these improvements in accu-
come with great cost in computation and storage. All of these

ors contributed to a decline of interest in auditory modeling for
riod of time until computing resources were able to catch up
the demands of these approaches.

The role of synchrony in auditory processing

h of our own work in this area is motivated by physiological
ings by Sachs and Young [6, 7] along with similar results ob-
ed by other research groups. Sachs and Young observed that
spectral representations of vowels developed using a measure
d on the average rate of auditory-nerve response was highly

endent on signal level, while spectral representations devel-
d from measures based on the cycle-by-cycle timing of the in-
ing signal maintained a high degree of consistency over a very
d dynamic range. We consider these results to be important to
ch recognition because the commonly-used MFCC and PLP
esentations are based on precisely the same type of short-term
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stimulus energy measurements that are developed by the highly
non-robust physiological mean rate of response. For this reason
we sought to develop a representation that reflected (at least in
part) the synchronization of neural response at low frequencies to
the incoming sound.

For these reasons, the potential role of auditory synchrony for
feature extraction for automatic speech recognition has received
increased attention in recent years. For example, a number of
relatively recent studies have developed and evaluated augmenta-
tions of Seneff’s GSD (e.g. [8, 9]). In addition, several variations
of feature extraction based on zero-crossing and peak amplitudes
(ZCPA) have appeared (e.g. [10, 11]), which may collectively be
regarded as special cases or extensions of Ghitza’s EIH model. We
believe that the synchrony extraction method described below is
likely to be more robust than the previously-developed algorithms
because it is less dependent on the exact shape of the waveform
or the specific nominal of the analysis channel. In addition, we
are evaluating the systems over significantly larger databases than
have generally previously been applied to systems that incorporate
auditory models.

2. Speech recognition using
auditory modeling

Carney/Zhang Auditory-Nerve Model

Synchrony
Detection

Mean-Rate
Estimation

Liftering

Frequency
Warping

0 – 2.5 kHz 2.2 – 8 kHz

DCT DCT

Normalize, Combine, and Apply LDA

Speech Input

Auditory-Based Features

Figure 1: General description of a system that performs both mean
rate and synchrony analysis. The system combines synchrony pro-
cesing at low frequencies with mean-rate processing at higher fre-
quencies, and converts the representation into coefficients that are
roughly similar to cepstal coefficients.

Our physiologically-motivated feature extraction consists of
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model for peripheral auditory-nerve activity, which also pro-
s the information for mean-rate processing, (b) a mechanism
extracting synchrony information from the outputs of paral-
hannels of the auditory-nerve model, and (c) a mechanism to
bine the mean-rate and synchrony outputs and convert them
a form that can be used by the speech recognition system.

se components are summarized in broad outline in Fig. 1. We
ribe these components briefly in this section.

Peripheral auditory model and mean-rate analysis

frequency analysis and subsequent nonlinear processing of
d by the peripheral auditory system establishes the represen-
n needed for the complex separation and analyses that take
e at higher levels of the auditory system. We have adopted for
purposes the implementation by Zhang et al. of a peripheral
el developed by Carney and her colleagues, which is specified
onsiderable detail in the literature [12]. The model describes
mber of physiological phenomena that we consider to be im-
ant such as synchrony suppression, and it is readily available
urce code form on the internet.

We obtain an estimate of the mean rate of auditory-nerve out-
from the short-term average of the “synapse outputs” of the
ney model, which are continuous functions that are propor-
al to the instantaneous rate of auditory-nerve firings in a given
uency band. Because the peripheral auditory model is highly
linear, the amplitude of incoming utterances is adjusted on a
ence-by-sentence to maintain a constant value of the power of
total signal in the frequency range 0 to 4 kHz, excluding silence
ons.

Synchrony extraction

have explored several ways of extracting synchrony informa-
for speech recognition. The processing in this paper attempts

xtract synchrony in a way that reflects the frequency content
he original signal, rather than merely the center frequency of

analysis channel. We first pass the output of each channel of
auditory model through a second bandpass filter with the same
uency response as the auditory filter for that channel to reduce
harmonic distortion introduced by nonlinearities in the periph-
auditory processing. The short-time Fourier transform of the
uts of the bandpass filters is computed, and these frequency
onses are averaged across channels. This produces a high-
lution spectral representation at low frequencies for which the
itory nerve is synchronized to the input up to about 2.2 kHz,
which includes the effects of all of the nonlinearities of the
pheral processing.
We remove the horizontal striations typically seen in narrow-
d spectrograms (which reflect the pitch of the incoming signal)
pplying a discrete-cosine transform (DCT) to the frequency
onse, applying a short-time ”lifter” to the inverse transform,
then returning to the frequency domain using an inverse DCT.

Development of features for speech recognition

features used for speech recognition are developed by merg-
the synchrony outputs at low frequencies with the mean rate
uts at higher frequencies. First the synchrony outputs, which
rge initially as a linear function of frequency, are warped along
frequency axis so that they while the mean rate outputs are
ped along the frequency axis in order to correspond to the non-
ar dependence on frequency of the center frequencies of the



analysis channels used to develop the mean rate outputs.
Components from the frequency-warped synchrony outputs

between approximately 0 and 2.5 kHz and components from the
mean rate outputs between approximately 2.2 to 8 kHz are pre-
served for further processing. These outputs are subjected to a
final DCT which produces a set of coefficients that are somewhat
similar to cepstral coefficients. The present implementation uses
the first 8 DCT coefficients derived from the synchrony outputs
and the first 5 DCT coefficients derived from the mean rate out-
puts. These are concatenated into a vector of 13 coefficients which
serve as the basic input to the speech recognition system. Delta
and delta-delta coefficients are obtained in the same fashion as is
normally done for the CMU SPHINX system.

Fig. 2 compares the outputs of conventional MFCC process-
ing and the processing developed in this paper. The upper panel
is a spectrogram of an utterance from the DARPA Resource Man-
agement (RM) corpus that had been corrupted by white noise at
a signal-to-noise ratio (SNR) of +10 dB. The center panel is a re-
constructed spectrographic representation of the features that are
developed by conventional MFCC processing with cepstral mean
normalization. The lower panel is a similar representation of the
combined mean rate and synchrony auditory-model outputs. We
note that the output of the auditory model provides a clearer pic-
ture that suppresses many of the effects of the noise.
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Figure 2: Comparison of outputs of conventional and
physiologically-motivated signal processing. Panels from top to
bottom depict (a) a wideband spectrogram of an RM Utterance
corrupted by white noise at an SNR of +10 dB, and reconstructed
spectrograms developed from (b) conventional MFCC processing
with cepstral mean normalization, and (c) the combined mean rate
and synchrony auditory-model outputs.

3. Experimental results
The feature extraction schemes described above were evaluated
by comparing the recognition accuracy obtained with the CMU
SPHINX-III system using conventional MFCC processing, the
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n rate outputs alone of the auditory model, and the combined
n rate and synchrony outputs. Two standard speech corpora
e used for these evaluations. The first corpus consisted of a
et of 1600 training utterances and 600 testing utterances from
DARPA Resource Management (RM) database. The second
er corpus was the DARPA Wall Street Journal WSJ0 (WSJ)
base, which consisted of 7024 training sentences and 651 test-
sentences. Since we are concerned primarily with the relative
ormance of the various signal processing schemes considered,
ttempt was made to fine tune the parameters of the SPHINX
er and decoder to minimize the absolute error rate.

Experimental results are shown in Fig. 3 for the RM task and
ig. 4 for the WSJ task. In each case the speech is corrupted
oth white noise (upper panels) and by musical segments of the
PA Hub 4 Broadcast News database (lower panels). Word ac-

cy (defined as 100% minus the word error rate as defined by
T) is plotted as a function of SNR for systems using conven-
al MFCC features (squares), auditory processing using mean
information only (triangles), and the auditory processing us-

the combination of mean rate and synchrony information (dia-
ds) as depicted in Fig. 1.

It can be seen that the use of the physiologically-motivated sig-
processing results in a substantial improvement in word accu-
, particular at SNRs in the range of 5 to 15 decibels. We prefer
haracterize improvement as the amount of threshold shift pro-
d by the processing (as opposed to the percent improvement
particular SNR). The combined processing that includes syn-
ny provides an improvement of about 15 dB SNR in white
e for the RM task and perhaps 10 dB for the WSJ task. Im-
ements in the presence of background music are far more lim-

, about 3-4 dB. Processing using mean rate alone is usually not
ffective as processing that includes synchrony. While we be-
e that the worse performance observed with background music
partly a result of suboptimal input signal normalization, we
also observed a similar effect using more traditional signal

essing for robust speech recognition (cf. [13]).

Figure 5 compares the recognition accuracy obtained using
n-rate processing of the outputs of the peripheral auditory
el of Zhang et al. [12] and similar procesisng using a sim-
ed peripheral model. The simplified model consists of a cas-
of (1) a bank of fourth-order gammatone filters with the same

er frequencies as those of each channel of the Zhang emphet
model, (2) a full-wave rectifier of each of the channel out-
, and (3) a memoryless compressive nonlinearity that has the
e input-output characteristics as the corresponding long-term
onse of the Zhang et al. model at each center frequency. It is
r that the detailed processing of the Zhang et al. model pro-
s a representation that is more robust in noise than the sim-
ed model, even though we do yet understand on a deep level
tly which aspects of the Zhang et al. model are the most in-

mental in accomplishing this.

4. Summary

have developed a new approach to the representation of syn-
ny information at the level of the auditory nerve which has led

ubstantially improved speech recognition accuracy compared
oth conventional cepstral processing and compared to similar
pheral that is based on the mean rate of response only.
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Figure 3: Recognition accuracy (100% minus word error rate) for
the DARPA Resource Management (RM) task. Plotted are results
using baseline MFCC coefficients with cepstral mean normaliza-
tion (triangles), the auditory model using mean rate only (squares),
and the auditory model with mean rate and synchrony (diamonds).
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