
Prompt Selection with Reinf
in an AT&T Call Routi

Charles Lew
Giuseppe Di Fab

AT&T Labs – Re
180 Park Ave. – Florham Park

{clewis, pino}@resear

Abstract 
Reinforcement Learning (RL) algorithms provide a type of 
unsupervised learning that is especially well suited for the 
challenges of spoken dialogue systems (SDS) design.  SDS are 
constantly subjected to new environments in the form of new 
groups of users, and RL provides an approach for automated 
learning that can adapt to new environments without costly 
supervision.  In this paper, we describe some results from 
experiments with RL to select prompts for a call routing 
application.  A simulation of the dialogue outcomes were used 
to experiment with different scenarios and demonstrate how RL 
can make a system more robust without supervision or 
developer intervention. 
Index Terms: spoken dialogue systems, reinforcement learning, 
call routing 

1. Introduction 
Reinforcement Learning (RL) systems simultaneously learn and 
perform without supervision.  Instead of learning a single, static 
solution, RL implementations learn and adapt continuously over 
time.  This makes RL techniques applicable to a variety of real-
world problems that defy supervised machine learning (ML) 
solutions.  

Many environmental factors (such as the volume of calls 
received, the hours that the application is in operation, and the 
geographical region where the application is deployed) can 
affect the operation of an SDS application, yet are unknown at 
the time that the application is designed.  Based on their 
expertise, User Experience (UE) engineers have to make many 
non-trivial decisions, such as the system’s semantic scope (e.g., 
call-types in the case of call routing systems), the dialog 
manager strategy which will drive the human-machine 
interaction, and many other facets of these applications.  Often, 
these experts cannot agree on the best type of opening prompt, 
for example, or the best compromise between hand-holding for 
and empowerment of the user.  

After the application is deployed and its performance 
analyzed, the UE expert can use this data to adjust the 
application and deploy it a second time.  This is repeated as 
often as necessary.  Each re-deployment requires human 
intervention for data transcription, data analysis, re-authoring, 
and quality assurance beforehand, engineering resources for the 
re-deployment itself, and monitoring after to determine the 
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cts of the re-deployment and to determine if further 
aking is necessary. 

The goal of this experiment was to explore the potential for 
RL solution to reduce the need for re-deployment by 

uming responsibility for prompt selection.  When the 
mpts for a system are created, the designer has a number of 
s of phrasing each one.  For example, the system may take 

 initiative and tell the user what their options are (closed or 
tem initiative prompt), or the system may invite the user to 
ress their needs in their own words (open or user initiative 
mpt). Some prompts use a fictional personality, and some 
mpts may try to reassure the user with friendly instructions.  
 effectiveness of each kind of prompt depends on the 
ation and how well they are received by the user. 

The unsupervised learning of an RL system can have great 
efits here, where human supervision of changes to the 
tem is costly and time-consuming.  Rather than force the UE 
ert to decide between prompts, this approach defers that 
ision and provides a method to let the system exploit the 
imal prompts over time.  Potentially, this can make dialogue 
igns more robust by allowing the decision to be made at run-
e, based on feedback from the environment. 

2. The Application 
 applied this approach to a call routing application used by 
&T’s small business customers to report and track service 
blems.  This application tries to elicit enough information 

 the caller to route the call to a call center that specializes in 
ir request. 

Call centers are sensitive to call volume, so the application 
s to route calls as specifically as possible.  By accomplishing 
ial request type identification, the application can reduce the 
unt of time that human operators spend speaking to 

tomers, and increase the number of customers that the call 
ter can handle.  Conversely, the more unclassified calls 
eived by a call center, the fewer customers that they can 
dle. 

The purpose of the call routing process is to elicit the 
r’s intent.  If the caller asks to be routed directly to a human 
tomer service representative (CSR), a special prompt is used 
ry to convince the user to interact with the automated system.  
his application, the UE expert created four potential prompts 
this situation, which we will refer to as CSR prompts.  They 
 from completely open to completely closed, and utilize 
erent levels of hand-holding and reassurance.  In our 
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experiments, the choice of which prompt to use was made with a 
RL algorithm. 

3. RL, and RL for Voice Applications 
RL-type techniques have been used in voice applications before.  
In ([3] and [7]), RL systems are used to plan high-level dialogue 
strategies.  These systems evaluated a design problem and 
created an optimal solution for deployment.  This application of 
RL does not derive a single, optimal solution, rather, it 
implements an adaptive one.  The approach used here will 
demonstrate a way for the UE expert to author a range of 
possible prompts and then leave it to the system to determine 
which one should be used. 

At the completion of a task (or at some intermediate step in 
a task), the RL system receives feedback which it uses to refine 
its behavior in future episodes.  Unlike supervised learning, 
which requires a large set of labeled data, RL can be put into 
motion without any pre-compiled model of its environment.  
There are many variations of the RL problem and possible 
solution implementations (as described in [2], [4], and [8]). 

The components that most RL systems have in common are 
a policy to guide its decisions, a value function to describe the 
value that the system puts on a state (or a state/action pair) 
within the course of problem-solving, and a reward function to 
describe the environment’s reinforcement of a course of action.   

The policy is the algorithm that makes the decisions, and 
the data structures that support it.  We denote the current policy 
as π, and the optimal policy as π*.  π is the subject of continuous 
refinement in RL, with the goal, of course, of achieving π* or 
close to it. 

The value function describes the value that the system puts 
on a particular state, or state/action pair.  This function relies on 
the experience of the system to ascribe a long-term utility to 
available actions, and informs the choices made by the policy.  
Value functions as they are used in this paper are based on the 
action taken in a particular state.  These are called the action-
value functions in the literature and denoted as Q(s,a). We will 
refer to these too as simply value functions.  The most accurate 
action-value function, Q*(s,a), will result in the best policy, π*.   

The reward function describes the feedback from the 
environment, it is what the value functions try to predict.  Part 
of the RL problem can be thought of as a refinement of the 
value functions to more closely approximate the reward 
function.  It is possible for there to be both intermediate rewards 
and final rewards in the decision making process.  Only final 
rewards will be provided in this application.  

Learning occurs with these components by a process called 
Iterative Policy Generation (IPG).  In this process, there is a 
feedback loop between the policy, π, the value function, Q(s,a), 
and the reward function: 

1. The system makes a decision using policy π. 
2. The reward function provides feedback on the decision. 
3. Decision value function is refined 
4. A new policy, π|, is created, based on the new value 

function.  This is the policy used in the next dialogue 

Because the new policy is based on an improved value 
function, it will, on average, achieve improved rewards.  As the 
number of iterations increases, and the value function improves, 
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 policy approaches π*.  In order for this system to work, the 
icy must take advantage of the accuracy of the value 
ctions to maximize the expected reward.  How this is done 
ends on the RL implementation used. 

The so-called Monte Carlo approach relies entirely on 
erience with the environment to improve policy.  The two 
ical operations are refining the value functions (performed 
ween well-defined episodes), and deciding which action to 
e from a given state s (performed during episodes).  When 
 system receives reinforcement from an episode, it integrates 
 new data into relevant value functions.  If the reward 
ction never changes, a straightforward average of all returns 

 a state-action pair will provide a continuously improving 
roximation of the true value of the pair as more data 
omes available, by the law of large numbers.  In this 
nario, there is no need to weigh new data any differently 

 old data.  If we cannot make this assumption, however, we 
st discount the old values as new data becomes available.  
s is done by scaling the effect of new rewards with a step-
 (α) as follows: 

Q(s,a)’ ← Q(s,a) + α ( r – Q(s,a) )        (1) 

This distinguishes RL from systems that use statistical 
imization without consideration for the order in which the 
a was received.  This makes an RL system more effective for 
ynamic environment where typical optimization is not a 
fect fit. 

4. Data Collection 
 application, including the application logic and the prompts 
d, was designed by an AT&T User Experience expert.  This 
ign was then implemented using Florence, the dialogue 
ager in AT&T’s VoiceTone® system [1].  The application 
 deployed under the VoiceTone® platform, which provided 

 logging used for data collection.  RL was not applied in the 
a collection.  During collection, the system selected a prompt 
domly at each decision point. 

Over the three months that the application was in use, data 
 collected on 9,786 dialogues.  Of these calls, 845 used a 

R prompt.  The data collected on each call included the 
logue states entered, prompts used, number of re-prompts 
 to silence timeouts or speech recognition rejections, and the 
ting destination of the call.   We simulated dialogue 
comes in the experimental phase based on the frequency of 
h outcome for each CSR prompt in the collected data. 

The general idea of the RL reward is to give successful 
logues a higher score than non-successful ones.  The 
stion of what constitutes a “successful” dialogue has been 
mined before, for example in the context of predicting 
blematic dialogues [9].  In our case, we are not limited to 
ply successful or not-successful: we can also assign scores 
t correspond to varying levels of success after the dialogue is 
plete. 
 The most obvious criterion to use is how the routing was 

dled.  If the call was routed to a call center it was successful 
ome degree.  If the user hung up before the call could be 
ted, it was not.  The reason for the hang-up is unknown to us, 
 could be unrelated to the system design, but for our 
poses this type of dialogue was considered not-successful.  



There is one routing destination, the general CSR line, that 
is used as a fallback when the system cannot gather enough 
information to choose one of the others.  This occurs when the 
system has given up on eliciting more specific information from 
the caller.  Although this is not as bad as a complete disconnect, 
we would prefer a well-specified routing.  This outcome was 
assigned a score greater than the score for a hang-up, but less 
than the score for more specifically routed calls. 
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Figure 1 Number of non-successful dialogues from 
gathered data.

After a call was scored, the reward value was used to 
update the appropriate value function, as per Equation 1. 

For comparison to the experimental data, Figure 1 shows 
the number of calls disconnected by the user before routing and 
the number of calls that were routed to the default CSR line 
(default routing) during data collection with random prompt 
selection.  The graphs in this paper show one data point for 
every 100 dialogues that used a CSR prompt.  This value is 
presented as a percentage of calls of each type. 
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Figure 2 Number of non-successful dialogues in a 
simulation of a stable environment.  (Legend as per fig. 1)  
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. Simulated RL in a Stable Environment 
ure 2 is a typical outcome of the first set of experiments with 
 simulation, where a data point was computed every 100 
logues, for a percentage of each type.  The number of 
logues with default routing drops sharply after around 2500 
logues.  The number of dialogues where the caller hangs up 
ains fairly steady, despite significant differences in the hang-
rates between the prompts.  Because many more calls result 
efault routing than in the caller hanging up, prompt selection 
ominated by consideration for the former.   

In the calls leading up to the steep drop in default routing, 
 system develops the value function for each prompt.  The 
p occurs when the prompt that results in the highest rewards 
 attained a value high enough to keep it in the lead.  
ctuation of value scores is illustrated in more detail in the 
t section. 

The results of this simulation demonstrate the potential for 
 Monte Carlo approach to improve the routing of calls.  In a 
l deployment, over time, the system would have developed a 
ference for the prompts that were more successful at eliciting 
rmation from the user, resulting in fewer calls routed to the 

ault operator. 

Simulated RL in a Dynamic Environment 
 environment in this simulation is produced by the dialogue 

come models, which are compiled from the collected data.  
simulate a change in the environment, the models were 

nged halfway through each run.  At this point, the outcome 
del for the top performing prompt is switched with the model 
the worst performing one.  Although this isn’t a realistic 
nge in the environment (the simulated user reactions to the 
mpts), it is drastic enough to demonstrate the adaptive effects 
the RL algorithm.  As shown in Figure 3, this had an 
ediate affect on the simulated percentage of default routing.  
ediately after the outcome models were switched, the 
ber of calls with default routing returned to its initial level, 

ore RL took effect.  Within 100 dialogues, the percentage of 
ault routing dropped again but much more quickly than it did 
the beginning of the process.  This rapid re-adjustment 
ered the number of default routing calls down almost to the 

el seen before the model change.  This pattern was typical of 
 runs in this experiment.  

In Figure 4, we can see what happened behind the scenes 
ne of these runs.  This chart shows the value for each of the 

mpts as new data is received.  In the first half of the run, the 
ue for prompt 031 gradually increases to become the highest, 
 then the number of calls routed to the default destination 
ure 3) declines drastically.  This is the same behavior that 

saw in the previous experiment, without the model change. 
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Figure 3 Number of non-successful dialogues in a 
dynamic environment. (Legend as per fig. 1)

Halfway through the run, the model that generated the 
results for prompt 031 dialogues, the most valued prompt, was 
switched with the model that generated results for prompt 032, 
the least valued prompt.  This is where Figure 3 shows a large 
up-tick in the number of exceeded re-prompt calls, and where 
the value for prompt 031 drops precipitously in Figure 4. 

Within a hundred dialogues of the up-tick, however, the 
number of calls routed to the default destination is down to a 
much lower level.  This adjustment happened very quickly 
because the second-most valued prompt, prompt 030, takes over 
as soon as the value of prompt 031 declines.  This immediately 
lowers the percentage of default routings.  Eventually the model 
for prompt 032 (originally the model for prompt 031) takes the 
lead again, and the percentage of calls routed to the default call 
center returns to the same level seen before the model switch. 
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Figure 4 Prompt scores in a dynamic environment.

7. Conclusions 
This brings to light an aspect of exploration that is not typically 
mentioned: beyond its use for the initial exploration to arrive at 
the best action, beyond using exploration to make sure that the 
most highly-valued action is still the most highly-rewarded, 
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loration in RL also maintains the accuracy of the value 
ctions of all of the state/action pairs throughout the lifetime 
he application.  In this experiment, when the top-performing 
on stopped performing, the second-best action quickly took 
lace, limiting the effect of the environmental change.  This 

trolled degradation of performance provided a safety net for 
system until it was able to readjust the values of the affected 
mpts. 

These experiments demonstrate that it is possible to frame 
ken dialogue system prompt selection as an RL problem, and 
 it is possible for the Monte Carlo RL technique to provide 
tinuous, unsupervised learning for this task.  In the first set 
xperiments, it was demonstrated how this approach works in 
ew environment, with no assumptions made about the 
tive values of each action.  In the second set of experiments, 
environment was dynamic and the system was tested to see 
 well it could adapt.  This provided an interesting 
onstration of how the exploration inherent in RL systems 
es them more robust to change. 
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