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Abstract
The measure of the goodness, or cost, of concatenating synthesis
units plays an important role in concatenative speech synthesis. In
this paper, we present a probabilistic approach to concatenation
modeling in which the goodness of concatenation is represented
as the conditional probability of observing the spectral shape of
a unit given the previous unit and the current phonetic context.
This conditional probability is modeled by a conditional Gaussian
density whose mean vector has a form of linear transform of the
past spectral shape. A phonetic decision-tree based parameter ty-
ing is performed to achieve a robust training that balances between
model complexity and the amount of training data available. The
concatenation models are implemented in a corpus-based speech
synthesizer trained with a CMU Arctic database and the effective-
ness of the proposed method was confirmed by a subjective listen-
ing test.

Index Terms: speech synthesis, unit selection, join costs.

1. Introduction
Corpus-based concatenative approach to speech synthesis has been
widely explored in the research community in recent years [1, 2,
3]. In this approach, the best sequence of phone or subphone-sized
synthesis units are chosen from a large inventory of units to syn-
thesize speech from the input text through the minimization of the
overall cost. The overall cost is often modeled as the weighted sum
of target costs and concatenation (or join) costs defined on various
features of synthesis units such as spectral shape, intonation con-
tour, and segmental duration. Establishing a good model of con-
catenation cost is one of the most important aspects that influence
the quality of concatenative speech synthesis, and there has been a
number of research efforts to find a good measure of concatenation
cost [4, 5, 6, 7], in which various spectral feature parameters and
distance measures are investigated. There is also a research effort
to find optimal mapping functions from distance measures to costs
based on perceptual evaluation [8].

In our probabilistic framework for concatenative speech syn-
thesis [9], we depart from the traditional view of cost based on
“distance” and attempt to take a probabilistic view of concatena-
tion cost where concatenation modeling is done with a probabilis-
tic model that captures how likely it is to observe the spectral shape
of the current unit given the spectral shape of the previous unit.
For the modeling of this conditional probability, we make use of
conditional Gaussian models. The mean vector of a conditional
Gaussian density has a form of linear transform of some other vec-
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which is useful for representing the correlation between two
om variables. An example of the use of conditional Gaussian
eech processing is found in autoregressive HMMs [10], where

observation vector from a state is conditioned not only on the
tity of the current state, but also on the observation from the
ious state.
In this paper, we present a roubst and efficient training method
an experimental evaluation of the probabilistic concatenation
els. Section 2 gives an overview of the model. A robust and ef-
nt training method for the models based on phonetic decision
-based context tying is described in section 3. Experimental
lts are presented in section 4 where we examine how linear
sforms for conditional means of the models are trained from
corpus. Subjective evaluation results are also reported. The
section presents our conclusion.

2. Probabilistic concatenation models
model the goodness of concatenation of the spectral shapes
he synthesis units in terms of the conditional probability of
rving the spectral shape o(uk) of the unit uk given that of
previous unit uk−1 and the phonetic context ck for the k-th
. We currently assume that it is enough to consider the spectral
es near the concatenation boundary, so that

P (o(uk)|o(uk−1), ck) ≈ P (h(uk)|t(uk−1), ck),

re h(uk) represents some initial portion (or head) of the spec-
shape of the unit uk, and t(uk−1) represents some portion at
end (or tail) of the spectral shape of the unit uk−1. In the
ent implementation, head and tail are spectral feature vectors
aged over a 10 ms interval (two 5-ms frames) at the both end

he unit. As a spectral feature vector, we use 14 MFCC coef-
nts with dimensionality reduced to 8 by principal component
ysis. This concatenation probability is modeled by a condi-
al Gaussian density,

h(uk)|t(uk−1), ck) = N (h(uk)|Bck t(uk−1) + bck , Σck),
(1)

re h(uk) and t(uk−1) are d-dimensional vectors, Bck is a d×d
ession matrix with the j-th row representing a regression coef-
nts for the j-th component of h(uk), bck is a d-dimensional
or of intercepts, and Σck is a d × d covariance matrix. In
current implementation using phone-sized units, we adopt the
ne identities of the units uk and uk−1 as the context ck that
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h(uk)

t(uk-1)

h(uk) is very similar to t(uk-1). h(uk) almost independent of t(uk-1).

h(uk)

t(uk-1)

(a) (b)

Figure 1: Schematic diagram representing the relationship be-
tween h(uk) and t(uk−1) in two extreme cases.

identifies the model parameters {Bck , bck , Σck}. We drop the suf-
fix ck for simplicity of notation hereafter.

Fig. 1 shows conceptual graphs using hypothetical one-
dimensional features that describe the relationships between the
tail and the head of two consecutive units for two extreme cases.
Fig. 1 (a) corresponds to a case where spectral shapes are very sim-
ilar across the unit boundary, e.g. a vowel followed by the same
vowel. In this kind of situation, the regression matrix B is con-
sidered to be close to identity matrix and the constant vector b is
close to zero. On the other hand, if there is a case like Fig. 1 (b),
where the head of the current unit is almost independent of the tail
of the previous unit, the regression matrix B is considered to be
close to zero matrix and b will be the significant contributor to the
mean vector. In general cases in between two extremes, B and b
are considered to have some meaningful values that represent uk’s
characteristics that is dependent on uk−1 in some aspects and in-
dependent of it in some other aspects.

2.1. ML estimation of conditional Gaussian model parameters

The maximum likelihood (ML) estimate of the model parameters,
B and b from the training data is derived as a solution to a simple
convex optimization problem, like ML estimation of a multivariate
Gaussian. The training data D = {(t1, h1), ..., (tN , hN )} for a
conditional Gaussian model for a given phonetic context consists
of all the pairs (ti, hi) of tail and head spectral feature vectors
available from the corpus for that context.

By defining a d × (d + 1) matrix A and a (d + 1)-vector si,
where d is the dimensionality of ti and hi, such that,

A =
[

b B
]
, and si =

[
1
ti

]
, (2)

it holds that B ti + b = Asi. Thus, we obtain the estimates of
B and b from the estimate of A. Then the conditional Gaussian
density function can be written as

N (h|B t + b, Σ) = N (h|A s, Σ)

=
1

(2π)d/2|Σ|1/2
exp{−1

2
(h − As)T Σ−1(h − As)}.(3)

The log likelihood L with the training data D is, therefore,
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L(A, Σ;D) � log
N∏

i=1

N (hi|Asi, Σ)

= −dN

2
log 2π − N

2
log |Σ|

−1

2

N∑
i=1

(hi − Asi)Σ
−1(hi − Asi). (4)

ing the partial derivative of L with regard to A, and utilizing
formula (see, e.g., [11]),

∂{(Xa + b)T C(Xa + b)}
∂X

= (C + CT )(Xa + b)aT ,

ave

∂L
∂A

= −1

2
ΣN

i=1{−(Σ−1 + Σ−1T
)(hi − Asi)s

T
i }

= Σ−1
N∑

i=1

(hi − Asi)s
T
i . (5)

ing the partial derivative to zero, we obtain the ML estimate of
s

Â = (
∑

his
T
i )(

∑
sis

T
i )−1. (6)

covariance matrix Σ can be estimated as the sample covari-

around the conditional mean Â si, and it reduces to

Σ̂ =
1

N

N∑
i=1

hihi
T − Â

1

N

N∑
i=1

sihi
T . (7)

3. Robust training with decision-tree
clustering

number of the types of contexts that determines the specific
ditional Gaussian (CG) model to use for measuring the good-

of concatenation can be very large and we may have rather
training data points (or, even worse, no data points at all) avail-
from the corpus for some types of phonetic contexts. In the

ent implementation where the context is simply determined by
phone identities of the current unit and the preceding unit, the
ber of possible combination is already close to 3000. In order
chieve robust training of the conditional Gaussian concatena-
models, we tie the model parameters using phonetic decision-
clustering. Contexts for the models are clustered according to
questions about the phone symbol of the preceding units (tail
nes). The process of parameter tying is performed by the fol-
ing steps.

1. Initial CG model parameters are trained for all the distinct
contexts, i.e. the combinations of tail and head phones
available in the training data.

2. For each head phone, CG models with this same head phone
are clustered using phonetic decision tree:

(a) All the CG models with this head phone is tied and
associated with the root node of the decision tree.



(b) Each terminal node of the tree is examined and re-
cursively split into two child nodes based on the pho-
netic question that yields the maximum increase of
the likelihood.

The node is not split if the likelihood gain is below
the prespecified threshold or the number of training
data points after split is smaller than the prespecified
minimum number of elements in the node.

Suppose we have a subset of the (augmented) training data
S = {(s1, h1), ..., (sn, hn)} associated with a node, where si is
a (d + 1)-dimensional augmented tail vector like in the equations
(2). Let LS be the log likelihood with regard to S of the model
trained with S itself. Noting the relationship,

n∑
i=1

(hi−ASsi)
T Σ−1

S (hi−ASsi) = trace(Σ−1
S ·n ΣS) = n ·d,

where AS and ΣS are augmented regression matrix and covariance
matrix trained with S, we can reduce LS into

LS = log
n∏

i=1

N (hi|AS · si, ΣS)

= −n

2
(d log(2π) + log |ΣS | + d). (8)

Therefore, we see that the log likelihood with S depends only on
the covariance matrix ΣS and the number of data points n. When
S is divided into the subsets A with a data points and B with b
(= n− a) data points by a phonetic context question, the increase
in the log likelihood G becomes

G = LA + LB − LS

=
1

2
{(a + b) log |ΣS | − a log |ΣA| − b log |ΣB|}. (9)

G can be computed efficiently utilizing the sufficient statistics∑
i his

T
i ,

∑
i sis

T
i ,

∑
i hih

T
i , and

∑
i sih

T
i and the formulas (6)

and (7). We compute these sufficient statistics for all the untied
models in the stage 1 of the decision tree-based clustering pro-
cess described earlier. The likelihood at any node can be com-
puted reusing these sufficient statistics without direct reference to
the training data points.

Figure 2 shows part of the decision tree grown for clustering
the context for the head phone [aa], obtained through the training
of CG models in the experiment described in the next section.

4. Experiments
We trained the conditional Gaussian concatenation models using
the speaker SLT of the CMU Arctic speech databases [12]. It is
spoken by a female speaker of American English and consists of
1132 utterances. The total duration is roughly 50 minutes. The
phone inventory we used consists of 53 detailed phones. For the
decision tree-based clustering of the phonetic context, the likeli-
hood gain threshold was set to 1.0 and the minimum number of
data point per node was set to 17. As a result, the whole 2809 (=
532) combinations of the tail and head phones were clustered into
677 clusters. Figure 3 depicts three examples of the augmented
regression matrices of the conditional Gaussians. From the left
matrix, we see that the constant vector part b is dominant in the
linear transform Bt + b for the phonetic context [s] for [ah],
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re 2: A phonetic decision tree for clustering the context for the
phone [aa]. Open circles represent nonterminal nodes and

d circles represent terminal nodes. Nodes are split by phonetic
stions on the preceding preceding unit.

reas we also note a slight diagonal pattern in the regression
rix. On the other hand, the diagonal components of the regres-
matrix B appears to be very dominant in the transition from
r] or [r] to [ax] (Figure 3 (b)), suggesting that the spectral
e is very similar on the both sides of the boundary. In Figure

), we notice significant contributions from both of the constant
or b and the regression matrix B for the boundary of a nasal
sonant ([en], [n], or [ng]) and the vowel [ow].

In order to investigate the effectiveness of the proposed ap-
ch to concatenation cost, we performed a subjective listen-
test, using Euclidean distance as the baseline for compar-
, which has been reported to be a good predictor of per-
ed discontinuity when measured on Mel-cepstral feature pa-
eters [13]. For synthesizing the utterances, we made use of
speech synthesizer reported in [9], trained also with the Arctic

database. In this synthesizer, the total cost C is the sum of
e kinds of target costs (ct

d for duration, ct
f for F0, and ct

s for
trum) and the spectral concatenation costs cc

s,

=
N∑

k=1

{ct
d(uk)+ct

f (uk)+ct
s(uk)}+

N∑
k=2

cc
s(uk−1, uk), (10)

re the concatenation cost cc
s with the proposed models is de-

d as

cc
s(uk−1, uk) = −w · logP (h(uk)|t(uk−1), ck). (11)

en the Euclidean distance is used, it is defined to be

cc
s(uk−1, uk) = w · ‖h(uk) − t(uk−1)‖. (12)

rder to determine the weight for the Euclidean distance, we
iminarily synthesized ten utterances with varying values of the
ght w and picked the one that yielded the best sounding syn-
ic speech by informal listening. A set of twenty sentences were
acted for the listening test from the sentences used for Blizzard
llenge 2005 [14]. Ten sentences were taken from “novels”
and ten other sentences were taken from the “conversation”

. Eight subjects listened to the speech synthesis output from
synthesizers, one of which adopting Euclidean distance and
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the other with the proposed conditional Gaussian (CG) models for
concatenation cost. They were asked to give scores of 1 to 5 to
each utterance. The results of the listening test is summarized in
Table 1. The mean opinion score with the proposed method turned
out to be significantly higher than the baseline at the 1% level by
the paired t-test, with a p-value of 5.178 × 10−11.

Table 1: 5-level mean opinion scores for the two synthesizers.

Euclidean CG

2.44 2.97

5. CONCLUSION
In this paper, we presented a novel probabilistic approach to con-
catenation modeling using conditional Gaussian models. We de-
scribed a maximum likelihood estimation formula for the mod-
els and a robust and efficient training scheme using decision-tree
based context clustering. We implemented the proposed method
with a CMU Arctic speech database and confirmed the effective-
ness of the proposed method by a subjective listening test. In the
current work, we only look at spectral features to measure the
goodness of concatenation. It would further help improving the
synthesized speech quality if we also consider a prosodic feature
such as F0.
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Figure 3: Graphical representations of the 8 × (1 + 8) augmented regression matrices A = [b|B] trained using Arctic SLT corpus for
concatenation boundaries of (a) from [s] to [ah], (b) from [axr]/[r] to [ax], and (c) from [en]/[ng]/[n] to [ow]. Small squares
represent matrix elements and the color bar on the right shows the mapping from the element’s value to its color. Darker squares have larger
absolute values. Red means positive and blue means negative if full color is available.
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