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Abstract

We present a computational auditory scene analysis system for
separating and recognizing target speech in the presence of com-
peting speech or noise. We estimate, in two stages, the ideal binary
time-frequency (T-F) mask which retains the mixture in a local T-
F unit if and only if the target is stronger than the interference
within the unit. In the first stage, we use harmonicity to segre-
gate the voiced portions of individual sources in each time frame
based on multipitch tracking. Additionally, unvoiced portions are
segmented based on an onset/offset analysis. In the second stage,
speaker characteristics are used to group the T-F units across time
frames. The resulting T-F masks are used in conjunction with
missing-data methods for recognition. Systematic evaluations on
a speech separation challenge task show significant improvement
over the baseline performance.
Index Terms: speech segregation, computational auditory scene
analysis, binary time-frequency mask, robust speech recognition.

1. Introduction
In everyday listening conditions, the acoustic input reaching our
ears is often a mixture of multiple concurrent sound sources.
While human listeners are able to segregate and recognize a target
signal under such conditions, robust automatic speech recognition
remains a challenging problem [1]. Automatic speech recognizers
(ASRs) are typically trained on clean speech and face the mis-
match problem when tested in the presence of interference. In this
paper, we address the problem of recognizing speech from a target
speaker in the presence of either another speech source or noise.

To mitigate the effect of interference on recognition, speech
mixtures can be preprocessed by speech separation algorithms.
Under monaural conditions, systems typically depend on modeling
the various sources in the mixture to achieve separation [2, 3, 4].
An alternate approach to employing speech separation prior to
recognition involves the joint decoding of the speech mixture
based on knowledge of all the sources present in the mixture [5].
These model-based systems rely heavily on the a priori informa-
tion of sound sources. As a result, they face difficulty in handling
novel sources. For example, systems that assume and model the
presence of multiple speech sources only, do not lend themselves
easily to handling of speech in (non-speech) noise conditions. In
contrast to the above model-based systems, we present a primarily
feature-based computational auditory scene analysis (CASA) sys-
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that makes weak assumptions about the various sound sources
e mixture.
From an information processing perspective, the notion of an
l binary T-F mask has been proposed as the computational goal
ASA [6]. Such a mask can be constructed from the a pri-

knowledge of target and interference; specifically a value of 1
he mask indicates that the target is stronger than the interfer-
e within a particular T-F unit and 0 indicates otherwise; a T-F
denotes the signal at a particular time and frequency. Previous
ies have shown that such masks can provide robust recognition
lts [7, 8]. Hence, we propose a CASA system that estimates
mask to facilitate the recognition of target speech in the pres-

e of interference.
According to Bregman [9], human auditory scene analysis
A) takes place in two main steps: segmentation and grouping.
mentation [10] decomposes the auditory scene into groups of
tiguous T-F units or segments, each of which should originate

a single sound source. Grouping involves combining the seg-
ts that are likely to arise from the same source together into
ngle stream [9]. Grouping itself comprises of simultaneous
sequential organizations. Simultaneous organization involves
ping of segments at a particular time. Sequential organization

rs to grouping across time.
In this paper, we present a two-stage monaural CASA system
follows the ASA account of auditory organization as described

ve. The input speech mixture is analyzed by an auditory filter-
k in successive time frames. The system then generates seg-
ts based on a multi-scale onset and offset analysis [11]. In si-
taneous grouping, within each time frame, voiced components
ndividual sound sources are segregated based on periodicity
ilarity. This is followed by a sequential grouping stage that uti-
s speaker characteristics to group segments across time frames.
cifically, we first sequentially group the segregated voiced por-
s. Unvoiced segments are then grouped with the corresponding
ed “streams”. The output of our CASA system is an estimate

he ideal binary mask. This mask is used in conjunction with
sing-data methods [7, 12] for recognizing the target speech ut-
nce.
The rest of the paper is organized as follows. The next sec-
contains a detailed presentation of our proposed system. The

em has been systematically evaluated on the speech separa-
task that involves the recognition of a target speech utterance

he presence of either a competing speaker or speech-shaped
e [13]. The evaluation results are presented in Section 3. Fi-
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nally, conclusions and future work are given in Section 4.

2. System description
Our model for monaural speech segregation is a two-stage CASA
system shown in Fig. 1. The input to the system is a mixture of
target and interference. In this section, we describe our system in
terms of its processing of the two-talker mixtures from the speech
separation task [13]. In the simultaneous grouping stage, the sys-
tem estimates pitch tracks of individual sources in the mixture in
order to segregate the corresponding voiced portions in each time
frame. Additionally, it segments the unvoiced portions based on an
onset and offset analysis. The utterances are derived from a closed
set of 34 talkers of both genders. Hence, in the sequential group-
ing stage, speaker models are used to group the segregated voiced
segments and the unvoiced segments across time to produce bi-
nary T-F masks, which are used in conjunction with missing-data
methods to recognize the target utterance.

2.1. Simultaneous grouping

The input mixture is downsampled from its original frequency (see
Section 3) to 20 kHz. The mixture signal is first analyzed using
a 128-channel gammatone filterbank whose center frequencies are
quasi-logarithmically spaced from 50 Hz to 8 kHz [14]. The output
is then decomposed into time frames by applying a sliding window
of 20 ms with 10 ms overlap. The resulting T-F energy decomposi-
tion is referred to as cochleagram and is used for further processing
by the CASA system.

The human auditory system segregates a target speech source
from various interferences using several cues, including differ-
ences in pitch and onsets [9]. Here, we first adapt the speech
separation system in [15] to segregate the voiced portions of in-
dividual speakers. The system in [15] estimates multiple pitch
tracks and their associated simultaneous voiced segments. In the
low-frequency range, the system generates segments based on tem-
poral continuity and cross-channel correlation, and groups them
based on periodicity similarity. In the high-frequency range, the
signal envelope fluctuates at the pitch rate and amplitude modula-
tion (AM) rates are used for grouping [14].

We then seek to recover unvoiced segments for subsequent
grouping with the estimated simultaneous voiced segments. We
employ a multi-scale onset/offset analysis system [11] for segmen-
tation. Specifically, the system first detects onsets and offsets, and

then
set
duc
the
and
tain
mog
por

2.2.

The
T-F
sam
quir
stre
gan
sear
pos
men
ers
spe
fica
Fin
pair

in S
we
orga
and
calc
How
unit
acc
com
bou

mas
now
that
The
rith
of th

74
generates segments by matching corresponding onset and off-
fronts at multiple scales. A final set of segments are then pro-
ed by integrating over all scales. Unlike natural conversations,
blind mixing of speech in the speech separation task blurs
merges onset-offset fronts, thus creating segments that con-
both voiced and unvoiced speech and that are not speaker ho-
eneous. We extract the unvoiced segments by removing those

tions that are overlapped with the simultaneous segments.

Sequential grouping

simultaneous voiced segments are supposedly composed of
units from the same speaker. However, the segments from the
e speaker are still separated in time. Thus, a CASA system re-
es sequential grouping to organize these segments into speaker
ams. For this purpose, we adapt and employ our sequential or-
ization algorithm [16] based on speaker models. The algorithm
ches for the optimal segment assignment by maximizing the
terior probability of an assignment given the simultaneous seg-
ts. As a by-product, it also detects the two underlying speak-

from the input mixture. Specifically, for each possible pair of
akers, it searches for the best assignment using speaker identi-
tion (SID) scores of a segment belonging to a speaker model.
ally, the optimal segment assignment is chosen by the speaker
that yields the highest aggregated SID score [16].
Studies have shown that voiced speech plays a dominating role
ID and sequential grouping (e.g. [16]). Therefore in this task,
first apply the model-based sequential grouping algorithm to
nize the simultaneous segments, producing two binary masks
corresponding speaker identities. Originally, the algorithm
ulates frame-level SID likelihoods for posterior maximization.
ever, here the simultaneous segments are composed of T-F

s, resulting in missing frequency components in a frame. To
omodate this constraint, we employ a missing-data method to
pute the likelihoods similar to [17]. Specifically, we apply the
nded marginalization method [7].
The unvoiced segments are subsequently grouped with the
ks using the above sequential grouping algorithm except that
we use the fixed speaker pair that has been detected. We find
the onset/offset analysis does not capture all speech segments.
refore to refine the binary masks, we apply a watershed algo-
m [18] (available in the Matlab toolboxes) to the cochleagram
e mixture and extract segments that comprise of T-F units with
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Figure 1: Schematic diagram of the proposed two-stage CASA system. In the simultaneous grouping stage, the system uses periodicity
similarity to group voiced components in each frame. In addition, the system performs an an onset/offset analysis to produce segments for
unvoiced speech. The second stage involves sequential grouping of the voiced and the unvoiced segments across time frames. The system
generates binary T-F masks and speaker identities, which are used by a missing-data ASR to recognize the target utterance.



similar energy values. First, a watershed segment is absorbed by
either of the aforementioned masks if it is strongly (greater than
two-thirds) overlapped with the masks. This step assumes that a
small segment of connected T-F units with close energy values is
produced by the same speaker. Second, if a segment is not merged,
then its overlapped portions, if any, are removed. Finally, the re-
maining segments are grouped with the refined masks using the
sequential grouping algorithm and the detected speaker pair.

2.3. Recognition strategy

The output of the sequential grouping stage is a pair of binary T-F
masks and the corresponding speaker identities. The speaker iden-
tities are used to infer the gender information. The binary masks
are then used in a spectrogram reconstruction method of missing-
data recognition [12] to reconstruct the spectral values in the T-F
units labeled 0 in each mask using a gender-dependent prior speech
model. To apply this method, a mixture spectrogram is first gener-
ated by applying a short-time Fourier transform, consisting of 10
ms time frames and 256 DFT coefficients, to the signal. Recall
that our CASA system produces a binary mask that corresponds to
a 128-channel gammatone filterbank. For consistency, this mask
is mapped into the DFT domain prior to reconstruction [19]. From
the reconstructed spectrograms, we compute the Mel-Frequency
Cepstral Coefficients (MFCCs) for use in recognition. 12 cepstral
coefficients and a logarithmic frame energy term, along with delta
and acceleration coefficients, are extracted each frame. These fea-
ture vectors are then used by an ASR system to transcribe the tar-
get. For target selection, see below.

3. Experimental results
The proposed system has been evaluated on the speech separa-
tion task [13]. The goal in this task is to recognize speech from a
target talker in the presence of another competing speaker (two-
talker) or speech-shaped noise (SSN). The signals are sampled
at 25 kHz and follow a sentence grammar of “<$command>

<$color> <$preposition> <$letter> <$number> <$adverb>”
(e.g. “Place blue at F 2 now.”). There are 4 choices each for $com-
mand, $color, $preposition and $adverb, 25 choices for $letter (A-
Z except W), and 10 choices for $number (0-9 and zero). The
two-talker task is to identify the letter and the number spoken by
the talker who said “white”. The SSN task is to identify the color,
the letter and the number [13]. The training data is drawn from
a closed set of 34 talkers of both genders and consists of 17,000
utterances. The two-talker test data contains pairs of sentences
mixed at 6 different target-to-masker ratios (TMRs): −9, −6, −3,
0, 3 and 6 dB. One third of this data consists of same talker (ST)
mixtures, another third comprises of mixtures of different talkers
of the same gender (SG), and the remaining third consists of differ-
ent gender (DG) mixtures. The SSN data is generated by mixing
clean utterances with speech-shaped noise at 4 SNRs: −12, −6,
0 and 6 dB. The test sets have 600 utterances in each TMR/SNR
conditions. Since our CASA system does not have parameters to
tune, we do not report results on the development set.

Each of our 34 speaker models utilizes the cochleagram fea-
ture as described in Section 2, and comprises of 64 mixtures of
Gaussians. Although the speaker genders are not explicitly pro-
vided, they can be inferred from the training data. Hence, we train
gender-dependent prior models for use in reconstruction. These
models comprise of 1024 Gaussian mixtures. As mentioned in
Section 2.3, during testing, the detected speaker identities are used
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le 1: Recognition accuracy (in %) of the baseline system and
proposed CASA system on the two-talker task. DG, SG and ST
r to subconditions of “different gender”, “same gender” and
me talker” respectively. Avg. is the mean accuracy, and R.
r. is the relative improvement.

MR(dB)/Sys. DG SG ST Avg. R. Impr.

Baseline 66.00 65.92 66.52 66.17
8.31

Proposed 82.00 77.37 57.69 71.67

Baseline 51.25 49.44 51.58 50.83
21.98

Proposed 79.25 68.72 40.95 62.00

Baseline 36.00 34.64 32.58 34.33
52.69

Proposed 70.00 63.97 27.15 52.42

3
Baseline 19.25 22.07 18.55 19.83

105.1
Proposed 58.50 49.16 17.65 40.67

6
Baseline 9.50 10.34 9.50 9.75

216.2
Proposed 45.00 33.80 15.61 30.83

9
Baseline 3.25 4.75 3.62 3.83

389.6
Proposed 29.00 16.76 11.09 18.75

nfer the gender of segregated streams. Whole-word HMM-
d gender-independent ASR models are first trained with 8

es for each word and 32 Gaussian mixtures with diagonal co-
ance in each state using HTK. We then perform supervised
der adaptation using maximum likelihood linear regression and
imum-a-posteriori adaptation [1].
For the two-talker task, because the identity of target is
nown after segregation we select the target stream as fol-
s. We recognize both segregated streams using the following
grammars:“<$command> white <$preposition> <$letter>
umber> <$adverb>” and “<$command> <$non-white>
reposition> <$letter> <$number> <$adverb>” ($non-

te refers to the 3 colors excluding white). For each stream,
then obtain a normalized score by subtracting two recognition
lihoods. Finally the stream with the larger score is chosen as
target.
Table 1 summarizes the performance of the proposed CASA
em on the two-talker task. Performance is measured in terms of
entage accuracy score for the relevant keywords at each TMR

dition [13]. We report the results for the DG, the SG and the
subconditions, together with the overall mean score (Avg.). For
parison, we also show the performance of our baseline system
out segregation. The proposed system improves significantly

r the baseline system in terms of average accuracy across all
R conditions. This is also shown by the relative improvement
Impr.) in accuracy. Larger improvements are observed in the
and the SG conditions. However, the system does not perform

rly as much in the ST condition, which is not a realistic condi-
. This is primarily due to our use of speaker models for sequen-
grouping. Note that for the ST condition, neither speaker char-
ristics nor grammar are distinctive for segregation. Figure 2
pares the system performance with (w/) and without (w/o) the

conditions. Note that baseline performance is nearly the same
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Figure 2: Recognition accuracy on the two-talker task. The
solid triangle line represents our baseline recognition results.
The dashed inverted-triangle line shows the baseline performance
without the same talker (ST) data. The results of our proposed
CASA system is given as the solid circle line. Its accuracy without
the ST condition is presented as the dashed square line.

with and without ST conditions. Our CASA system achieves fur-
ther absolute improvement of about 10% on average in the without
ST condition over the with ST condition.

For the SSN task, the speaker model-based sequential group-
ing algorithm is not applicable. Hence, we directly use the simul-
taneous voiced segments for recognition. Note that the absence of
unvoiced portions makes the resulting mask sparse and therefore
for this task we use the bounded marginalization method [7] on
the cochleagram feature. The missing-data ASR model is gender-
independent and trained similar to the ASR training described be-
fore. Table 2 presents the performance of our system in terms of
percentage recognition accuracy across different SNRs. The clean
condition is included to indicate the performance of our missing-
data ASR without the separation system. Across all SNR condi-
tions, our CASA system shows a significant improvement over the
baseline recognizer. This confirms the ability of our separation
system to generalize well to the SSN condition.

4. Conclusion
In this paper, we have presented a CASA system capable of
segregating and recognizing the contents of a target utterance in
the presence of other speech sources or speech-shaped noise. We
have systematically evaluated our system on the speech separation
task and obtained significant improvement over the baseline
performance across all TMR/SNR conditions. The proposed
system is primarily based on features such as periodicity, AM, and
onset/offset. These properties are not specific to the target source
to be segregated or even to speech sounds. In other words, the
system does not use a priori knowledge of sound sources in the
mixture, except in sequential grouping, where we have utilized
text-independent speaker models. Moreover, the segregation does
not depend on the target vocabulary. A resulting advantage is the
generality of our system in terms of dealing with both speech and
non-speech interferences.
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le 2: Recognition accuracy (in %) on the SSN task of the pro-
ed CASA system. For comparison, the baseline performance is

shown.

R(dB) Baseline System Proposed System R. Impr.
Clean 93.94 - -

6 29.50 76.78 160.2
0 16.22 66.22 308.3
−6 12.50 39.06 212.5
−12 13.00 19.22 47.85

ning Hu for discussion and much assistance. We acknowledge
SLATE Lab (E. Fosler-Lussier) and the Ohio Supercomputer
ter for providing computing resources.
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