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Abstract
This paper addresses the problem of segmenting audio data

recorded with embedded devices for the purpose of intelligent
sensing in the context of multi-modal interactions. We propose
a real-time method for robust speech detection in natural, noisy
environments. It is based on a fusion of high order statistics of the
LPC residual and autocorrelation, and adopts an on-line version
of Expectation Maximization algorithm for the classification.
Experimental evaluations show that the proposed method provides
better detection performance under different types of natural
noises, working robustly against other voices in the context of
multi-speaker interactive situations. As the proposed method is
based on features which have a low computational cost, and has a
small latency, it is suitable for real-time tracking applications.
Index Terms: voice activity detection, high order statistics, on-
line EM

1. Introduction
The problem of detecting voice in audio sources, also called
VAD (voice activity detection), is a classical problem in speech
processing. It is a common front-end in most tasks involving
speech processing. It is for example used as a front-end
to automatic speech recognition (see [1]); having a VAD
algorithm robust to noisy environments is crucial for recognition
performance [2]; it is also used in speech coders, such as GSM
729. More recently, VAD has been used as a feature for
conversational scene analysis [3] and multi-modal recognition of
group actions or meetings ([4], [5]).

The VAD algorithm presented here was developed for those
multi-modal applications; we intend to use it on wearable capture
systems, which capture audio and video data to help the users with
contextual information (see [6] for a presentation of the system).
Segmenting audio for this purpose is significantly different from
traditional tasks where VAD is studied. First, in the context
of audio coding or speech recognition, the assumption of high
proportion of speech can be made, and missing speech sections
has a higher cost than detecting non-speech as speech. In other
words, for those applications, the VAD algorithm is usually pretty
conservative when detecting voice; a low False Rejection Rate
(FRR) is preferred to a low False Alarm Rate (FAR). In our case,
we are more interested by having a precise idea about when does
the speaker takes its turn, while keeping a small FAR.

Generally, finding speech in noisy environments is a difficult
task: simple techniques based on an adaptive threshold on simple
features such as energy or zero crossing-rate work well in high
SNR environments, but fall short in other cases. The situations
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Figure 1: Overview of the proposed method

are interested in are very adverse conditions for VAD:
romental noise changes in time, and the volume of the user
ances is not fixed because users may change the microphone
tion and direction. Moreover, as those situations inherently
lve several speakers, the algorithm must be insensitive to
r speaker voices. The proposed approach uses a feature based
igh order statistics to be robust against background voices
oderate levels, enhanced by the use of autocorrelation, and
ts an on-line version of EM algorithm to adapt the voice

sion step to environment and speaker variations.

The overview of the proposed method is depicted in Figure
nd the details are explained in the rest of the paper as
ws: section 2 briefly describes the task and data used in our

k; in section 3, the new feature based on LPC residual and
correlation is introduced, and in section 4, the use of on-line
algorithm for classification is described; the proposed method
aluated in comparison to conventional methods in section 5.

2. Task and database
are building an interaction corpus, which consists of a large
unt of data of human communications. The goal of this corpus
support the users using contextual, automatically extracted

rmation ([6]), gathered with wearable sets and sensors in
art room. VAD is one of the features used to sense the
actions and control other devices.

In this paper, we use a portion of this interactive corpus to
lop and test an effective VAD algorithm. The data were
rded in the following conditions: people were wearing the
edded device equiped with a microphone in a room with
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Figure 2: Example of log spectrum for near field speech (top) and
far field speech (bottom)

other people. They were visitors to the lab during an openhouse.
The data contain several kind of noises (air conditioning, other
people, cars running on the street, etc.). The test database contains
around 45 minutes of audio data, split into around 30 files of the
same length, each file containing different speaker (thus different
microphone position), different gender, different language (mainly
Japanese, but also English), different sparsity and different SNR
(between 10 dB and 25 dB).

3. Proposed feature
3.1. LPC residual and high order statistics

To be robust against background voices, we cannot directly use
standard features related to pitch such as autocorrelation or zero-
crossing. The most obvious feature would be energy, since the
energy of recorded signal is directly dependent on the distance
between the source of the sound and the microphone. But then
we have to cope with the normalization problem for real-time
applications [2]. Another characteristic observed on distanced
speech is the loss of low frequency harmonics, and thus far-field
speech has less harmonics than near-field speech, as shown for
example in Figure 2

Instead of trying to capture directly the number of harmonics
in the spectrum, we use the cumulants, also called high order
statistics (HOS). Cumulants of a random signal X are derived from
the logarithm of the moment generating function Φ(t) of X . More
exactly, the cumulant of order n is defined as the nth coefficient
of the Taylor expansion series of the logarithm of Φ(t):

log Φ(t) = log E[etX ] (1)

=
∞X

n=0

kn
tn

n!
(2)

We primarly considered normalized kurtosis (cumulant of
order 4 normalized by the variance) and normalized skewness
(cumulant of order 3 normalized by the variance) of the LPC
residual which increase with respect to the number of harmonics
when the signal can be well approximated by a sinusoidal model,
as proved in [7]. Also, all cumulants of order stricly bigger than 2
are 0 for Gaussian distributed signals. This property makes them
robust against some kinds of noises such as wideband noises. As
there is an explicit relationship between the cumulant of order n
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the moments of order n and below, we can easily compute
values 1. Both kurtosis (noted k) and skewness (noted s) were
idered, either separately or together; the kurtosis was found to
ore effective than skewness for our use.

Enhancing cumulant estimators

of cumulants involves several problems for VAD. Because
he weak convergence properties of standard estimators for
ness and kurtosis, the estimated values can be quite different
the true value; they are also quite sensitive to outliers,

lem aggravated in the case of normalized estimators. This is a
lem for certain kinds of noise, such as transient noises (noises
located in time). To enhance the behaviour of the estimators,
ave to incorporate another feature whose behaviour does not
ge HOS distribution in the case of speech, but is insensitive to

sient noises. In this study, we propose to combine HOS with
alized autocorrelation.

Autocorrelation is a good cue to indicate pitch, and is fairly
st to transient noises; for those reasons, it has often been used

VAD (for example in [8]). To improve robustness to energy
ation of the signal, we use the normalized autocorrelation a[k]

frame x[t], given by the following formula:

a[k] =

PN
n=k−1 x[n]x[n − k]
“PN−1

n=0 x[n]2
” 1

2
(3)

periodic signals of period T samples, the autocorrelation will
maxima at multiple of T lags. We detect a peak if its

e is strictly bigger than its nearest neighbors on both sides.
ause of the normalization process, though, peaks can appear
low energy noise which have a sharp spectrum (an example
uch noise is motor noise); also, it is near useless by itself to
riminate between the main speaker’s speech and background
es. However, in this study, the motive to use autocorrelation
at its peaks have low amplitude for transient noises, which are

ost problematic noises when using HOS.

We combine autocorrelation’s peak amplitude m and kurtosis
e LPC residual k as follows:

f = m log (1 + k) (4)

The logarithm is used to compensate high values of kurtosis
e case of really strong voiced frames; it also gives a more

ssian-like behaviour to the feature, which is important for
classification method (see section 4). In the case of voice,
kurtosis and autocorrelation peak should have a high value;

distanced voice, the low kurtosis should compensate for
high autocorrelation value, and for transient noises, near 0
correlation should compensate for the high kurtosis value.
re 3 shows the behaviour of this feature for a small example.

extract contains mostly speech in the second half, and
sient noises can be seen around 10 second. The enhancement
e proposed feature on standard kurtosis is apparent. Also, the
ively loud background speech noise in the first seconds, which
ent high autocorrelation peaks, is effectively suppressed by the
kurtosis values.

more exactly their estimated value
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Figure 3: Audio example with spectrogram (top), energy (2nd),
main autocorelation peak amplitude (3st), ”log kurtosis” (4th)
and the proposed feature (bottom). The black boxes are speech
segments of the main speaker, hand-labeled.

4. Tracking the feature on-line

4.1. On-line EM algorithm

To demonstrate the effectiveness of the proposed feature in a
straightforward manner, we adopt a naive Bayes classifier: each
class ci (main speaker’s speech / other) is modeled as a Gaussian
of mean μi and variance σi, with a prior P (ci) = wi; this is a
simple binary Gaussian mixture model. The Gaussian parameters
were estimated by the Expectation Maximization algorithm. The
classification using the standard EM algorithm tested on the whole
signal for each audio file gives satisfactory results, but is obviously
not suited for real-time applications.

This section presents a simple adaptation of the batch EM
algorithm for the on-line case. On-line versions of the EM
algorithms have been proposed by several authors, for example
[9]. The basic idea is simple: instead of running on the whole
feature signal, the internal state of the EM algorithm (that is, the
parameters of the E step) is updated at each frame, taking into
account both the current feature vector and past feature vectors.
The learning rate λ(n), where n is the frame index, influences
the convergence, and [10] gives the conditions on λ to obtain
convergence.

We have to use some values for the EM algorithm’s initial
state; using random data may lead to problems such as one weight
tending toward 0. Two simple solutions were implemented: one
is to use some initial data (below one second of signal is enough);
the other is to use random data generated from a Gaussian mixture
model using prior parameters. Both methods gave similar results.
Another issue is how to handle the case where the condition
number of a covariance matrix approaches zero. In the on-line
case, we use a regularization scheme, as presented in [9].
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e 1: Frame error rates for the proposed algorithm (top), using
ine EM on kurtosis only (2nd), on-line EM on energy (3rd)
using offline EM on the proposed feature (bottom)

FAR FRR GER

Proposed algorithm 7.8 % 13.0 % 9.5 %

Using energy 15.8 % 10.6 % 13.3 %

Using kurtosis only 19.0 % 13.8 % 16.3 %

Offline EM 8.0 % 12.0 % 9.5 %

Tracking in correlogram

computing the peaks of the autocorrelation for our feature, we
track them in real-time. We implement a tracking algorithm
h simply builds tracks of peak positions between the current
the former frame; at frame t, for each peak candidate, we use
peak of frame t + 1 which minimizes the distance between
e t and frame t + 1. The parameters are quite ’loose’, as the
al classification will be done by the on-line EM anyway.

5. Experimental evaluation
Evaluation measure

use the most traditional metric: frame-level classification error,
is

• False Rejection Rate (FRR), defined as the ratio between
the number of missed speech frames and the total number
of speech frames

• False Alarm Rate (FAR), defined as the ratio between the
number of incorrectly detected speech frames and the total
number of non-speech frames

• Global Error Rate (GER), defined as the number of missed
and incorrectly detected speech frames divided by the total
number of frames

Results

used the test data of 45 minutes split into 30 files, as described
ection 2. The ratio of speech frames ranges from 10 to 90
with 33 % on average. The sampling rate is 8 khz, with
ame size of 256 samples: with a window of 256 samples,
pitch of human voice being typically in the range 80-250
we expect at least two pitch periods in each window. We
pare the proposed method with three other methods: replacing
enhanced kurtosis with energy, using kurtosis only without
ncement by autocorrelation, and using offline EM instead of

ine EM.
The results are summarized in Table 1. With the proposed
od, FAR is kept quite low, which is our main concern in

design of this algorithm. To get a more precise idea of the
vior of our implementation, we give in Figure 4 the frame

r rates with respect to the ratio (speech/non speech) for each
from the test database, compared against the implementation
g energy instead of enhanced kurtosis. The proposed feature
half as much false alarms as energy, and even though the FRR
bit higher, it can be seen in Figure 4 that the two methods are
significantly different. On the contrary, it is observed that the
gy-based method has significant higher FAR over the data of
speech ratio (below 20 %), which severely degrades GER as
.
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Figure 4: Results of the proposed VAD algorithm in function
of the speech/non speech ratio, in comparison with energy-based
method. The dashed lines show the standard deviation of each
criterion, and solid line the mean.

To see the effect of the enhancement on the cumulant based
feature, Figure 5 shows the frame error rates for the proposed
feature and the standard normalized kurtosis (we still converted
to logarithm to get a Gaussian-like behavior, though). Again,
significant degradation due to enormous false alarms is observed
for data of low speech ratio. Thus, without the autocorrelation
enhancement, using directly the kurtosis is not really effective.

It is also interesting to see how effective the on-line EM is; we
compare our results with an offline implementation of EM (i.e. the
standard version of EM). The results are at the last row of Table
1. Within our experiment, the on-line EM is almost as effective as
the traditional batch version; both results are nearly identical on
every test sample, and we lose almost nothing by having a real-
time version of the algorithm.

6. Conclusions
We have presented a new real-time algorithm for voice activity
detection in natural environments. It works effectively to detect
speech, while being robust against various kinds of noises,
including other speakers’ voices. On-line EM algorithm was
also succesfully imlemented as an on-line adapting algorithm.
As the proposed method is based on features which have a low
computational cost, and has a small latency, it is suitable for real-
time tracking applications.
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