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Abstract
In this paper, Linear Discriminant Analysis (LDA) is investigated
with respect to the combination of different acoustic features for
automatic speech recognition. It is shown that the combination of
acoustic features using LDA does not consistently lead to improve-
ments in word error rate. A detailed analysis of the recognition
results on the Verbmobil (VM II) and on the English portion of
the European Parliament Plenary Sessions (EPPS) corpus is given.
This includes an independent analysis of the effect of the dimen-
sion of the input to LDA, the effect of strongly correlated input
features, as well as a detailed numerical analysis of the generalized
eigenvalue problem underlying LDA. Relative improvements in
word error rate of up to 5% were observed for LDA-based com-
bination of multiple acoustic features.

1. Introduction
In [1], Linear Discriminant Analysis (LDA) was first applied
successfully to find an optimal linear combination of successive
vectors of a feature stream for automatic speech recognition.
LDA could equally well be used to combine different features.
In [2], direct combination of different cepstral features was done
using LDA, however without significant improvements in word
error rate (WER) compared to using the MFCCs alone. LDA also
is used successfully in the RWTH ASR system to take advantage
of an additional voicing feature [3]. Nevertheless, further exper-
iments presented here show improvements in word error rate are
not guaranteed using LDA to combine different acoustic features.
Specifically, we will present cases, in which LDA based feature
combination leads to degradations. A major difference to using
LDA on single feature systems is the large increase in the dimen-
sion of the input. This might induce numerical problems with
respect to the estimation problem to be solved within LDA, espe-
cially if the features to be combined are strongly correlated. The
robustness of LDA with respect to increasing the input dimension
has been addressed in earlier investigations. In [4] a decrease in
WER was observed when overly increasing the LDA input window
length. In [5], addition of random coefficients to the feature vec-
tors for an artificial recognition problem also showed degradations.
The latter experiment was repeated for speech recognition on real
data in this work and could not be confirmed. We review the
above-mentioned inconsistencies observed w.r.t. the performance
of LDA-based feature combination from the point of view of nu-
merical stability of the underlying eigenvalue problem to be solved
within LDA.
The paper is structured as follows. In Section 2, the usage of
LDA for feature combination is introduced. An overview of the
experimental setup is given in Section 3. Recognition results using
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for feature combination are presented in Section 4, followed
detailed analysis of the results in Section 5, including further
riments motivated by the analysis. The paper is concluded by

mmary in Section 6.

2. LDA-based Feature Combination
e following, we describe a straightforward way to use LDA for
re combination, and we discuss problems that might arise

n combining acoustic features using LDA.
combine different acoustic features, for each time frame
e feature vectors xfi

t of each feature fi with i =
. , I are concatenated to build multi-feature vectors xt =
, xf2

t , . . . , xfI
t ). To also take into account the acoustic con-

then the multi-feature vectors for a number of successive
frames are concatenated to build a multi-feature vector Xt =

n, xt−n+1, . . . , xt+n) centered around time frame t, cover-
the acoustic input of all combined features within a window
n + 1 time frames. Finally, a combined feature vector yt is
ted by projecting Xt into a subspace of reduced dimension:
= V T Xt. The transformation matrix V is determined by

such that it conveys the most relevant classification informa-
to the transformed feature vectors yt. The resulting acoustic
ors are used both in training and in recognition.

3. Experimental Setup
racteristics of the RWTH recognition system are summarized
able 1 for two large vocabulary speech corpora: the VerbMo-
I (VM II) and the English partition of the European Parliament
ary Sessions (EPPS) corpus. The VM II corpus consists of
an conversational speech whereas the EPPS corpus contains

ary session speeches of the European Parliament in British
lish. Acoustic modeling for both corpora is summarized in the
wing. The optimized LDA output dimension is 45. Gender in-
ndent cross-word triphone sub-word units are used. Triphones

clustered using a Classification and Regression Tree (CART).
resulting generalized triphone states are modeled by Gaussian
ture distributions with a pooled diagonal covariance matrix.
her properties differing for both systems are summarized in
e 1. On the VM II corpus, tests have been performed only on
valuation set. On the EPPS corpus, we present recognition re-
on both the development and the evaluation sets. The baseline
riments using a single feature apply LDA in the same way as

feature combination experiments. The only difference is that
use one feature resulting in a smaller LDA input dimension.
ertheless, the size of the projected feature vectors is kept con-
t throughout different experiments to ensure comparability of
orresponding numbers of parameters and recognition results.
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Table 1: Settings of the RWTH recognition systems for the
VM II and the EPPS corpus.

corpora name VM II EPPS
partition train eval train dev eval

size speech [h] 61.5 1.6 40.8 3.7 3.5
# speakers 857 16 154 16 36

lexicon vocabulary 10,157 54,265
lang. type class-trigram trigram
model perplexity 62.0 87 99
LDA window 11 frames 9 frames

output dim. 45 45
HMM topology 3 states w/ skip 6 states

silence 1 state 1 state
# states 3,501 4,501
# densities ≈396k ≈446k

4. Recognition Results
The experiments presented in the following are meant to test
the ability of LDA to combine an increasing number of dif-
ferent acoustic features. Table 2 shows results for LDA-based
feature combination of MFCC, vocal tract length normalized
MFCC (VTLN), voicing (V), and spectrum derivative (SD) fea-
tures [6] compared to the best single-feature result. On both
corpora, the subsequent combination of the VTLN, voicing, and
spectrum derivative features results in consistent successive im-
provements of WER. Finally, we have added the MFCC feature to
test the robustness of LDA against increasing input size. We have
not expected any significant change in WER since the MFCC fea-
ture is strongly related to the VTLN one. As shown in Table 2,
the additional MFCC feature has yielded neither in a significant
improvement nor degradation in WER. In contrast to the above
consistent improvements in WER, we have obtained unexpected
degradation when combining the MFCC, MF-PLP, and PLP [7]
features. Table 3 summarizes the baseline recognition results
of the individual features and the results obtained by the LDA-
based combination denoted by ΣLDA. On both corpora, we have
obtained strong degradation in WER. This observation does not
comply with the results shown in Table 2. There, the combination
of the VTLN, V, and SD features with the much weaker performing
MFCC feature did not cause any significant degradation in WER.
A possible explanation can be found if we consider the correlation
between the features as discussed in the following section.

Table 2: Consistent improvements in WER obtained by LDA-
based combination of increasing number of acoustic features.

corpus acoustic error rates [%]
feature dev eval

del ins WER del ins WER

VM II VTLN 3.8 2.9 19.1
+V 4.1 2.7 18.7
+SD 3.9 2.9 18.4
+MFCC 3.6 2.8 18.3

EPPS VTLN 4.3 1.3 14.2 3.7 1.5 14.1
+V 4.0 1.5 13.8 3.3 1.6 14.0
+SD 3.6 1.6 13.7 3.1 1.8 14.0
+MFCC 3.7 1.6 13.8 3.3 1.9 14.1
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e 3: Degradation in WER obtained by LDA-based combina-
of baseline features MFCC, MF-PLP, and PLP.

rpus acoustic error rates [%]
feature dev eval

del ins WER del ins WER

II MFCC 4.5 2.9 21.0
MF-PLP 5.2 2.3 21.0
PLP 5.9 2.3 21.4
ΣLDA 4.7 3.3 21.6

PS MFCC 4.3 1.4 14.7 3.8 1.7 15.3
MF-PLP 4.2 1.5 14.8 3.7 1.7 15.3
PLP 4.3 1.6 15.4 3.5 1.8 15.8
ΣLDA 4.8 1.4 15.8 4.1 1.6 16.2

5. Analysis of Results
mentioned in the introduction, aspects of the application of

in speech recognition have already been addressed before.
], experiments have been presented with increasing LDA win-
length i.e. with increasing number of successive concatenated
re vectors. Instead of converging improvements in WER,

ear optimum was found at 11 concatenated feature vectors.
5], feature vectors of an artificial recognition task have been

ented with an increasing number of white noise components.
classification error rate was doubled when augmenting a two-
ensional feature vectors with 200 white noise components.
, a real speech recognition system was used to test the effects

n increasing LDA window length. The authors found that in-
sing the LDA window length requires an increasing amount of
ing data to retain the best recognition result. In the following,
roblems with LDA-based feature combination presented here

in literature are analyzed in more detail.

Combination with White Noise Components

ossible explanation for the degradation in WER for using
with increasing input dimension could be instabilities of

underlying generalized eigenvalue problem resulting from the
eased dimension. If we assume that the degradation in WER
used by numerical instabilities then additional artificial white
e components should be able to induce these problems respec-
y cause increasing WER. Corresponding experiments were
ormed using the MFCC feature and constant LDA window
th. In order to increase the input dimension of LDA, the
aseline MFCC components have been augmented with white
e components simulating additional features for each time
e. To rule out singularities resulting from dependent features,
equired the added random features to be independent. Stan-
random number generators do not comply with this require-

t. E.g. for a corpus of ≈ 60 hours of training data, using
0-dimensional white noise extension for every MFCC vector
ires a random number generator with a periodicity greater than
× 109. In our experiments, we have used a random number
rator from [8], which ensured a sufficient minimum period
× 1018. Recognition results are summarized in Table 4. We
extended the 16 MFCC components with up to 90 white noise

ficients per time frame. The resulting concatenated LDA input
ors have grown up to 954 components per time frame. For

corpora, the white noise components have not caused any
adation in WER, i.e., increasing the feature vector size by



Table 4: WER obtained by LDA-based combination of MFCC fea-
tures and increasing number of randomly generated coefficients.

corpus # rnd # LDA error rates [%]
cmp input dev eval

del ins WER del ins WER

VM II 0 176 4.5 2.9 21.0
15 ∗ 11 341 4.5 3.0 20.9
30 ∗ 11 506 4.5 3.0 20.9
38 ∗ 11 594 4.8 3.0 21.0

EPPS 0 176 4.3 1.4 14.7 3.8 1.7 15.3
30 ∗ 9 414 4.3 1.3 14.6 3.8 1.7 15.2
60 ∗ 9 684 4.2 1.4 14.6 3.9 1.7 15.2
90 ∗ 9 954 4.3 1.4 14.8 3.9 1.7 15.4

up to a factor of nearly 7 apparently does not introduce numer-
ical problems to LDA when numerically solving the generalized
eigenvalue problem.
In contrast to [5], the experiments on real data presented here have
not led to significant changes in WER. Nevertheless, it should be
mentioned that the average number of observations per LDA class
observed here (4500) differs strongly from [5], where only 100
observations were presented per LDA class.

5.2. Sensitivity of Eigenvalues and Vectors

The application of LDA to feature combination has led to both
improvements and degradations in WER when combining an in-
creasing number of features. In Section 5.1 we have shown that
augmenting the features with further uncorrelated random features
does not lead to degradations. So what about additional correlated
features? A strong correlation between features can lead to sin-
gular scatter matrices. Generally, an indefinite symmetric matrix
pair (A, B) may lead to complex eigenvalues and may not have a
complete set of generalized eigenvectors. Note that if both A and
B are (close to) singular, then any complex number λ is a valid
eigenvalue. In all our experiments, we have used the linear algebra
software library LAPACK [9] to solve the generalized eigenvalue
problem. Although the matrices involved are symmetric, we have
applied the more general dggevx algorithm of LAPACK developed
for generalized non-symmetric eigenvalue problems, since it is
designed to cope with indefinite matrix pairs. The algorithm can
be summarized as follows. Assume the within- and between-class
scatter matrices B and W and the left and right eigenvectors yi

and xi, and corresponding eigenvalue λi, respectively:

Bxi = λiWxi, yH
i B = λiy

H
i W.

Reducing (B, W ) to the generalized upper Hessenberg form, a
generalized Schur decomposition results in the upper triangular
matrix pair (S, T ). The left and the right eigenvectors are com-
puted from (S, T ). The corresponding eigenvalues λi are calcu-
lated from the diagonal elements of (S, T ):

λi =
Sii

Tii
=

αi

βi
. (1)

Note that before calculating the eigenvalues, (near) singular cases
can be found by checking (αi, βi) for values close to zero.

Assume estimated (α′, β′) leading to a real eigenvalue λ of
the perturbed matrix pair (B + E, W + F ) with ||(E, F )|| =
ε||(B, W )||1 and ε is the 64bit machine precision. In perturbation
theory, for generalized eigenvalues the chordal distance between
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orresponding unperturbed (α, β) and the perturbed (α′, β′) is
ned as

((α, β), (α′, β′) =
|αβ′ − α′β|

p|α|2 + |β|2p|α′|2 + |β′|2 . (2)

, instead of discussing perturbations to a possibly singular
nvalue, perturbations to α and β are addressed in relation to
rturbation of the scatter matrices. Then, an asymptotic upper
nd for the error between the real and the estimated eigenvalues
ven by:

X ((α, β), (α′, β′) ≤ ε||(B, W )||1
S(λ)

, (3)

re S(λ) is called the reciprocal condition number of the eigen-
e λ. Small values of S(λ) indicate ill-conditioned eigenvalues,
e a small perturbation of the matrix pair (B, W ) results in a
e difference between the estimated and the real eigenvalues.
ilar to eigenvalues, the asymptotic error bound and the recip-
l condition number can also be derived for eigenvectors. For
ils cf. [10].
now present speech recognition experiments on the EPPS cor-
to investigate the relationship between WER and asymptotic
r bounds and reciprocal condition numbers delivered by the
vx algorithm, respectively. We present the error bounds and

reciprocal condition numbers averaged over all eigenvalues
ectively eigenvectors. Table 5 summarizes the results for
bination of different sets of features. The first line gives the
line results applying LDA on the MFCC feature only. In
next experiment, a singularity was introduced artificially by
ating the first MFCC coefficient to simulate a strongly cor-
ed additional one-dimensional feature. Although the infor-

ion contained in the acoustic features has not changed, WERs
eased considerably. Simple methods, like explicitly exclud-
eigenvectors from the projection matrix which belong to low
nvalues (α, β) < μ has not improved the results. Increasing
es of μ have been tested which lead to excluding an increasing
unt of eigenvalues close to singularity. The best recognition
lt has been obtained by μ = 3× 10−8. The average condition
bers have dropped rather heavily, indicating weak estimates of
igenvalues and eigenvectors, which might explain this degra-

on. Furthermore, the low average of the condition numbers
cates that a strong singularity effects not only the conditioning
e singular eigenvalue but also all the rest of the eigenvalue
ates. The third and fourth lines of the table show results

xperiments using the combination of different features. As
cted from the recognition performance, the experiment com-

ng the MFCC, VTLN, V, and SD features has not resulted in
e differences in condition numbers compared to the baseline
riment. Nevertheless, the conditioning of the eigenvectors
eased more strongly, which needs to be further investigated.
lly, we have calculated the average reciprocal condition num-
for the combination of the MFCC, MF-PLP, and PLP features.
goal was to find an explanation for the unexpected increase in
R compared to using the single MFCC feature. Although the
adation in WER is comparable with the experiment repeating
first MFCC coefficient, the conditioning has not decreased as
ily as in the second line of the table. Further analysis of
problem is required to verify if the small reduction in the
nvalue condition number and the increase in the asymptotic
r bounds explain the degradation in WER. Table 6, summarizes
lts obtained by increasing the LDA window length i.e. the
ber of successive concatenated feature vectors. Firstly, the
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Table 6: Average reciprocal condition numbers (CN) and asymp-
totic error bounds (EB) of eigenvalues (EVL) and eigenvectors
(EVC) on the EPPS corpus obtained by using increasing LDA win-
dow lengths.

input WER LDA CN EB
window [%] input EVL EVC EVL EVC
length dev eval dim. [10−2] [10−13] [10−8]

5 15.5 16.8 80 4.3 3.4 1.4 0.25
7 15.0 15.3 112 4.2 3.2 2.0 0.99
9 14.7 15.3 144 4.0 2.7 2.5 3.7
11 15.0 15.5 176 4.0 2.1 3.5 12
13 15.1 15.6 208 4.1 2.2 3.9 20
17 15.4 15.8 272 3.8 2.1 20 1200

condition numbers do not change significantly when increasing
the LDA window length. Although the asymptotic error bounds do
show a tendency to increase, their relation to WER is not obvious.
At hardly changing condition numbers, the increasing error bounds
must be caused by the increasing matrix norm ||(B, W )||1 which
is most probably caused by the increasing dimension. Therefore,
the increasing size of the scatter matrices seems not to lead to ill-
conditioned eigenvalue problems. For an explanation of the degra-
dation also the relation between the number of input features and
the amount of training data available might have to be considered.

6. Summary
The results presented for LDA-based combination of multiple
acoustic features show improvements in WER of up to 5% relative
to the best single-feature system. Yet, in some cases LDA-based
feature combination leads to unexpected degradations in WER.
Experiments with additional random components indicate that
the LDA input dimension is not the bottleneck. Adding about
1000 independent random features did not alter the WER. On
the other hand, adding strongly correlated acoustic features
lead to degradations in WER due to unstable estimates of the
projection matrix. The stability of the numerical estimation of
LDA was analyzed by means of perturbation theory. Nevertheless,
degradations in WER when increasing the LDA window length
and when combining MFCC, MF-PLP, and PLP features could
not be explained by this analysis. Therefore, careful preselection
of features to be combined still is necessary. Consequently,
in future work algorithms specifically developed for singular
pencils [11, 12] will be considered to improve the stability of the
eigenvalue and eigenvector estimates.
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acoustic WER [%] #LDA avr. recip. cond. num. avr. asym. error bound
features dev eval input eigenvalue eigenvector eigenvalue eigenvector

MFCC 14.7 15.3 144 4.0 2.7 × 10−2 2.5 × 10−13 3.7 × 10−8

MFCC+Repeated-1st-Coeff 15.6 16.2 153 1.7 × 10−8 2.0 × 10−19 8.3 × 102 > π
MFCC+VTLN+V+SD 13.8 14.1 306 1.0 5.2 × 10−4 2.3 × 10−11 1.0 × 10−4

MFCC+MF-PLP+PLP 15.8 16.2 432 1.5 × 10−1 6.8 × 10−4 3.0 × 10−11 2.5 × 10−3
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